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The existence and stability conditions for periodic solutions need no modification. 
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ORBITAL STABILITY ANALYSIS USING FIRST INTEGRALS* 

A.Z. BRYUN 

A method is proposed for investigating the oribtal stability of periodic 
solutions of normal systems of ordinary differential equations. The 
Lyapunov function is derived from the first integrals of the equations 
of the perturbed motion and the scalar product of the velocity of motion 
along the orbit and the perturbation vector. Lypunov's second method 
was first used in connection with orbital stability in order to study 
the phase trajectories of systems with two degrees of freedom /I/. 

1. &mstrW?ticWr Of the LyapwwV function. Let s2C R"+' be a domain containing the 
orbit /2/ of a T-periodic solution 

Y = d, (t) (1.4) 

of the autonomous system 

y' = F(Y) (1.2) 
We shall investigate the orbital stability of (1.1) under the assumption that F E Us) (9; 

R"+l). 
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Let (., .> denote the scalar product in R"+l, 

9 (t) = af (t) # 0, 2 = co1 (z,, . .( zn+J 

Xl = <F (2 + @ W), rl, (t)>-‘, x2 = $2 0) - <$’ w 2) 

It is well-known /2, Theorem 25/ that the solution (1.1) is orbitally stable if and only 
if the trivial solution of the equations 

z' = xlxpF (2 + 6, (t)) -$ (t) (1.3) 

is stable in Lyapunov's sense to perturbations of Z, in the manifold <q(O), Z,> ~0. Clearly, 
the following weaker assertion is also valid: 

Lemma. If the trivial solution of system (1.3) is Lyapunov-stable, then the solution 
(1.1) of Eqs.(1.2) is orbitally stable. 

Let us assume that Eqs.(1.2) have m time-independent first integrals u* lz C(l) (Q; R'), 
such that 

(Vi: 1 < i < m)(VY E 51):(grad L'i (Y), F(Y)) = 0 (I.41 

It follows from (1.4) that the first integrals 

Vi = Ui (Z + @ (t)) - Vi (@ (t)) (1.51 

of the equations of the perturbed motion 

Z' = F (Z + Q, (t)) -+ (t) (1.63 

are first integrals of system (1.3). Besides (1.5), Eqs.(l.3) also have the integral 

Y,+, = !$ (t), Z> (1.7) 

(see /2/), for which there is no analogue in the context of system (1.2). 
A trivial argument using Lyapunov's theorem derives the following result from the lemma. 

Theorem 1. If one can construct from V,, . . . . V,,, a positive (or negative) definite 
function of 2, then solution (1.1) of system (1.2) is orbitally stable. 

Thus, the only difference between the procedure for looking for a Lyapunov function in 
orbital stability analysis and the usual /3/ construction of a positive (negative) definite 
first integral of the equations of the perturbed motion (1.6) lies in the use of an additional 
function of the perturbations besides (1.5) - the linear form (1.7). This makes it possible 
to extend Chetayev's method of integral sheaves /4/ to orbital stability analysis. 

2. Integral &eaves and orbital stability. Let the first integrals by u* 65 C(J) (8; R'). 
Put I! (t) = grad Vi (0 (t)) and express the functions (1.5) by means of Taylor's formula as 

Vi = <L (t)9 Z> + <Qi (t) Z7 Z> + Ei (t3 Z) 

The maps 

Ej E C@)(R'; F+l)% Qi E @(R'; L(R*+', F'l)) 

are T-periodic, and El 09 Z) = Q (II Z I?) uniformly in TV R'. 

Theorem 2. If there exist hi e R1 such that 

C&l, (to) = 0 

at some time to, and the quadratic form 

Q = 3 <Q, (4 Z, Z> 

(2.1) 

is definite on the manifold N = {(t, Z)l (I1 (t), Z> = . . = (1, (t), Z) = <II, (t), Z> = 0}, then the 
solution (1.1) of system (1.2) is orbitally stable. 

Here and below, summation will always be over i from i=l to i -mm. 

Proof. The functions <Zi (t),Z> are first integrals of the variational equations for the 
solution (1.1) (see /5/). Consequently, Zi(t) are solutions of the linear system adjoint to 
the variational system /6/. By the existence and uniqueness theorem, Eq.(2.1) is equivalent 
to 

Zhil( (t) 3 0 (2.2) 
Choose the signs of ;li in such a way that the form Q becomes positive definite on N. Put 

B = IO; Tl x {Z )/I Z )I = 1}, H = <I$ (t), Z>2 -t B <li (t), Z)" 

af are positive constants. 
Let J'xNOB be an open set on which QPua,. On the compact set B\P, which is 

disjoint from N, H 2 2a, and Q>, -a,. Consequently, if p = apasU1, the function v:il+1 + 
/,&Z&Vi + ZViZ is positive definite, since by (2.2) it differs from the form PQ + H, which 
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is positive definite with respect to 2, by a quantity of the order of jlZIl*. By Theorem 1, 
the solution (1.1) is orbitally stable, as required. 

Remrks. 1. Why does the vector @(&,) not have to appear in (2.1)? To explain this, 
consider the scalar products of both sides of the equation 

&zi(fO) + km+l*(4) = O (2.3) 

with (lo ((0). Ip (to))-'* (to). Since 

(Ii (to), 9 (4)) = (Fad ui P (to)), F (0 (4))) = 0 

we conclude from (2.3) that J,,,+,=O. Thus (2.3) is equivalent to (2.1). 

2. The conditions of Theorem 2 are not only sufficient but also necessary for the exist- 
ence of a function q E Co) (Rm+l;R1) such that q (V,,..., V,+l) and its Hessian matrix at 

z=o are definite*. (*Bryum A.Z., Investigation of periodic solutions of the equations of 
mechanics by Lyapunov's methods. Candidate Dissertation, Donetsk, 1985. 

3. The.time t plays the role of a parameter in the formulation of Theorem 2, so that the 
question of whether the form Q is definite on N may be settled by known methods /i', 8/. 

To illustrate Theorem 2, we carry out an orbital stability analysis for some periodic 
solutions of the equations of motion of a rigid body about a fixed point. 

3. Pendulum-like motions in a central Newtonian force field. If the Clebsch integrability 
conditions /9/ are satisfied, the equations of motion 

Ap’ = (B - C)(qr - ev’v”) (ABC, w, v’Y”v) (3.1) 

v' = ry' - 4v" (VV'Y, TPP) (3.2) 

have first integrals 

U, = Apa + Bq* + Cr2 + E (Ay2 + Bfa + Cy”“) 

u, = Apy + Bqy’ + Cry”, U, = y2 -t y’= + f” 

U, = Asp2 + BaqB + C2r2 - e (BCy2 -+- ACyf2 + ABf’) 

System (3.1), (3.2) has a solution depending on the parameter h /9/: 

p. = 0, q. = 0, r,, = q’, ‘pm2 = G (cp) (3.3) 

y0 = sin cp, yO' = cos 'p, yO" = 0 

cc = AC-‘, fl = BC-‘, G (cp) = h -e (cc sin29 + fi cos* cp) 

We may assume without loss of generality that a> b. The periodicity conditions for 
(3.3) are 

A E 1 q3; + CxJ r\ {ea} (3.4) 

In the notation of Sect.2, 

1, = 2~01 (0, 0, Ccp’, eA sin 9, eB cos rp, 0) 

1, = cd (A sin cp, B cos cp, 0, 0, 0, Ccp’) 

1, = 2col(O, 0, 0, sin cp, co9 cp, 0) 

L = 2 C CO) (0, 0, Ccp’, -eB sin cp, -eA cos cp, 0) 

Apart from a multiplicative constant, 

h, = --C-l, h, = 0, h, = e (cc + p), h, = C-8 

Therefore the quadratic form Q is 

(aa - o) 21' + (B" - 8) zz2 + e (a + 8 - a8 - 1)2,* 

and the equations of the manifold N are 

a sin 'pzl + p cos 'pzz -t T'za = 0, sin gz, + cos 'pz, = 0 

'p'zs - afi sin cpz, - aa cos r+za = 0 

e (p - a)sin cp cos 'pzs + cp'cos cpz, -'p-sin cpz, = 0 

(3.5) 

(3.8) 
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Acccording to Theorem 2 we must check whether the form (3.5) is definite on the manifold 
(3.6). Change variables, putting 

z, = -_B? cos 'pzl + u-r sin 'pzz 

Then it follows from (3.6) that 

z1 = -(a-‘cp’ sin cpz, + b cos cp z,) 

zz = -_B-'cp'cos cpzz + cc sin 'pz, 

zz = z, = zg = 0 

Restricted to the manifold (3.61, the form (3.5) becomes a function of two independent 
variables - z, and z,: 

{cp'z [I - (a-l sinz rp + fi-' cos* cp)l + E (a + p - af3 - 1)) ze2 + (3.7) 
2(a-fi) cp’ sin cp cos 'pzsz,+ afi(c+ -osinz cp - fl cos* 'p)z,z 

The necessary and sufficient condition 

(a - l)(B -I)@ - acB) > 0 (3.8) 

for a quadratic form with coefficients periodic in cp to be definite, obtained from Sylvester's 
criterion, must be considered together with (3.4). Solving the system of inequalities (3.4) 
and (3.8) and using Theorem 2, we obtain the following. 

Theorem 3. If the constant U,, of the energy integral on the solution (3.3) satisfies 
any of the conditions 

Ul,E]eB;+ -[\{eA}, B<A(C 

U,C, E 1 eABC_l; + OO[, C <B < A 

u,, E 1 EB; &ABC-l [, B < C < A 

then the solution is orbitally stable. 
putting E = 0, we obtain a well-known condition for the stability of permanent rotations 

of an Euler gyroscope about the major and minor axes of the inertia ellipsoid (see /lo, para. 
392/). 

4. DeZone case. Under the Kovalevskaya conditions, the dynamic Euler equations in non- 
dimensional variables are 

2p' = qr, 2q’ = -rp - y’, r’ = yt (4.1) 

System (4.1), (3.2) has first integrals 

u, = 2 (p” + 42) + r2 - 239, u* = 2 (py + qy’) + ‘y 
us = y2 + $2 + p, u, = (P" - 42 + YY + (2pq + v')" 

and a particular solution 

p. = h sin (p, q0 = (p', r0 = 2h cos 'p 

Yo = %I= - P02? Yo’ = -2Pclqm you = sin (cp + a) 

cp'2 = G (rp) = cos (rp + a) -_z sin2 cp 

satisfying the Delone integrability conditions /ll/. Here h > 0 and a are parameters. 
We shall assume from now on that the solution (4.2) is not a constant. 
We have 

{(P 1 G = dG/dcp = 0, d2G/dcp2 > 0) # 0 

if and only if 

1 sin a 1 = (3 l/%-‘(2h2 + h,)"*(4h2 -h,) 

h4 E [a/,; 11, h, = (4h4 - 3p 

If h and a do not satisfy conditions (4.3), the solution (4.2) will be periodic. 
In the notation of Sect.2, 

(4.2) 

(4.3) 



I, = 2 co1 ro, -1, 0, 0) (2p,, 2% 

4 = co1 ch, a,‘, yen, 2Pov %v ro) 

1, = 2 co1 (0, 0, 0, -for Yo’, vo”h 
1, = col(0, 0, 0, 0, 0, 0) 

@ = co1 (PI33 PO, ro, YO? Yo’. vo”) 

Apart from a multiplicative constant, 

h, = h, = h, = 0, h, = 1 

The quadratic form Q is 

<l,, w + <L na 
1, = co1 (2p,, -2q,, 0, 1, 0, O), I, = co1 (290, 2p,, 0, 0, 1, 0) 
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(4.4) 

(4.5) 

This form is clearly definite on the manifold 

(11, z> = <I,, 2) = (I,, z> = <I,, 2) = <W, 2) = 0 

if and only if the vectors 11, 1st 1% I,, 1, and 0,' are linearly independent at any instant of 
time. Calculations show that (I,, W)G(~,,,~)= 0. Therefore, in order to apply Theorem 
2, we have to verify the condition rank {11, I,, l,, l,, le} = 5. Using standard linear algebra and 
Theorem 2, we obtain the following orbital stability criterion. 

Theorem 4. If h> 0 then any periodic solution of Eqs.(rl.l), (3.2) satisfying the 
Delone integrability conditions, other than the rest point, is orbitally stable. 

5. Pendulum motions of a KovaZevskaya gyroscope. Eqs.(4.1), (3.2) have a particular 
solution 

p0 = 0, q0 = cp’, r0 = 0, ‘p-2 = h _t cos cp 
y0 = co9 cp, yO' = 0, y/ = sin cp 

(5.1) 

describing the motion of a Kovalevskaya gyroscope about the major axis of the ellipsoid of 
inertia. If h#t-I, this solution is periodic. 

In the notat& of Sect.2, 

I, = co1 (0, 490, 0, -2, 0, O), I, = co1 (2y,, 0, YOI, 0, 2q,, 0) 

1, = 2 co1 (0, 0, 0, yo, 0, yo”). 1, = 2h co1 (0, 2q,, 0, -1, 0, 0) 

Apart from a multiplicative constant, 

h, = --h, h, = h, = 0, h, = 1 

The quadratic form Q is 

4W12 + 4 (Yo + h) 22 2 - hz,Z + 242 + 252 + 4q,z,z, - 4q,z,z, 

and the equations of the manifold N are 

2q,z, - 2, = 0, 2 cos ‘pzl + sin ‘pz, + 2q,z, = 0, cos ‘pzl + sin rfza = 0 

- ‘/z sin 'pz, - q0 sin 'pz, + q0 cos r+xze = 0 

(5.2) 

(5.3) 

Analysis shows that the form (5.2) is definite under conditions (5.3) only for 
OI. Using Theorem 2, 

hEI---l, 
we can state the result as follows. 

Theorem 5. If hEI--1,O[, then the solution 15.1) of system (4.1), (3.2) is orbitally 
stable. 

Remark. The solution (5.1) is stationary with respect to p,', pa-qg+y and zpq+ y', SO 

Theorem 5 implies the result of /12/ concerning Lyapunov-stability with respect to these 
quantities. 

The above sufficient condition for orbital stability has a simple physical meaning: if 
hEl-l,O[ and the system is performing pendulum oscillations, then the angle between the 
vector of the force of gravity and the barycentric axis remains acute throughout the motion. 

6. The Bobylev-Stektov case. We conclude with a non-trivial example in which the suf- 
ficient conditions of Theorem 2 are also necessary. Consider the periodic solution 

p0 = const, q0 = 0, r0 = ‘p’ (6.1) 
‘pe2 = 2k cos ‘p t_ po-* (1 - k2 - po4) 



ya = k cos ‘p - po8, yO’ = -k sin cp, yO" = -p.,r,, 

of Eqs.(4.1), (3.2) satisfying the Bobylev-Steklov integrability conditions /ll/. Here pO#O 
and k > 0 are parameters. The domain of admissible values of p,, and k is 

Ik-pp,'I<l (6.2) 

Theorem 6. The solution (6.1) of system (4.1), (3.2) is orbitally stable if and only if 

0 Q k <po', k* + 3p,” < 1 (6.3) 

or 
PO’ -C k < po2 + 1, 1 < ka + 3p,” (6.4) 

proof. Sufficiency. In the notation of Sect.2, the quantities h,l,,I, are determined by 
formulae (4.4) with qO=O, and 

Ir = 2 ml (2P0' + 2P,Yo, Qw;, 0, Pa* + Yet 0, vo’) 

The quadratic form is as follows: 

0 = 6P&’ + 6P,W + 22 f 2 + 4P.994 + 4Po44 - (Port + a)* (6.5) 

and the equations of the manifold N become 

3P,l, i- ro4 - *a = OS! h’os, + &‘o’% + “I’o’% + 2P,r + ~4 = 0 (6.6) 

If k>O we put &= --PO', &= -2p,, &= --i, h= 1. 
Then Q becomes 

t(4Po’ + 2%) II” + 4Yo)+4 - 2y,x,’ - @,,r, I+ a)’ (6.7), 

and N is defined by (6.6) with the additional equations 

To4 + Yo’% + ,Yo’4 = 0, Ye’s, + %‘W - @cl’ + To) w, - PoYo’4l= 0 (G.8) 

Eliminating the dependent variables from (6.6) and (6.81, one can check the forms (6.5) 
and (6.7) for definiteness using Sylvester's criterion. The conditions thus obtained on the 
parameters are precisely the disjunction of (6.3) and (6.4). Thus, by Theorem 2, conditions 
(6.3) and (6.4) are sufficient for (6.1) to be orbitally stable. 

Necessity. Following /13/, we put 

uo - PO-’ (3~0’ - k’ + i), 4K, = a' - 2.&,1x' + 4 1/jpo-’ @I,,‘ - k’ + 9) o + (6.9) 

4 (k’ - i) 

Hn = I,‘* ((1,, -- Ya$), Ha = l/r (- au,’ + u,a, - 2) 

where 00 is a multiple root of the polynomial K,. The relation 

SK, = (u - fi~,)~ la’ + 2 I/&,,Q + 2p,-' (k* - i)] 

shows that a,,*= Zp,=. Substituting this into (6.91, we obtain 

H,H, = l/z po2 (p,+ - k2) (1 - 3p$ - k2) 

It is known /13/ that if H,H,<O the equations of the Kovalevskaya gyroscope have a 
solution which tends asymptotically to (6.1) as t-+-W. By (6.21, a necessary and sufficient . . 
condition for I&H,>0 to be true is precisely the disjunction of (6.3) and (6.4). Con- 
sequently, if neither of conditions (6.3) and (6.4) is satisfied, the solution (6.1) is orbit- 
ally unstable. This completes the proof. 

Conditions (6.3) and (6.4) determine the region in the plane of the parameters k, PO= 
characterized by necessary and sufficient conditions for orbital stability of periodic sol- 
utions of the equations governing the motion of a Kovalevskaya gyroscope, on the assumption 
that the Bobylev-Steklov integrability conditions are satisfied (see the figure). 

k L 
0 I/v7 P,’ Fig.1 
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AN ALGORITHM FOR THE ASYMPTOTIC SOLUTION OF A SINGULARLY PERTURBED 
LINEAR TINE-OPTIMAL CONTROL PROBLEM* 

A.I. KALININ 

An algorithm for the approximate solution (in the asymptotic sense) of a 
singularly perturbed linear time-optimal control problem is proposed. A 
computational procedure is outlined, which permits the use of the 
resulting asymptotic approximation for the exact solution of the problem 
with a prescribed value of the small parameter. 

1. Statement of the problem. In the class of scalar piecewise-continuous controls, we 
consider the following optimal control problem for a time-independent linear system: 

x’ = A (p) x + b (p) u, 5 (0) = 9, I (7') = 0 
lu(t)I.<l, J(u)= T-+min 

(l.l), 


